A calbindin-immunoreactive cone bipolar cell type in the rabbit retina.

نویسندگان

  • S C Massey
  • S L Mills
چکیده

We have studied the distribution of the calcium-binding protein calbindin in the adult rabbit retina by using a commercially available antibody and immunocytochemical methods. The most heavily labeled cells are A-type horizontal cells, but B-type horizontal cells are also lightly labeled by this antibody. Among the horizontal cells, there is a mosaic of small, well-labeled somata, which we have identified as a subset of ON cone bipolar cells. In addition, some wide-field amacrine cells and a few large ganglion cells are also labeled for calbindin. The calbindin bipolar cells form a regular mosaic with a peak density of approximately 1,700 cells/mm2, falling to 550 cells/mm2 in the periphery. They account for about one-twelfth of cone bipolar cells, and they are narrowly stratified deep in sublamina 4 of the inner plexiform layer immediately above the rod bipolar terminals. Double-label experiments using an antibody to protein kinase C (PKC) indicate that the calbindin bipolar cells are completely distinct from the population of rod bipolar cells. Rod bipolar cells outnumber the calbindin cone bipolar cells by a factor of four to five. Further double-label experiments show that the calbindin bipolar cells are also labeled for recoverin. The calbindin bipolar cells are well coupled to AII amacrine cells, and they account for roughly 23% of the AII coupled bipolar cells. This suggests that there are three to four additional ON cone bipolar cell types that are coupled to AII amacrine cells. The calbindin cone bipolar cell described in this paper shares many characteristics with a reconstructed cone bipolar cell that forms the most gap junctions with AII amacrine cells (Strettoi et al. [1994] J. Comp. Neurol. 347:139-149). We conclude that these different methodologies provide complementary descriptions of the same cone bipolar cell type. The calbindin antibody defines a subset of cone bipolar cells in the rabbit retina. The cells in this subset are almost certainly the deepest of the cone bipolar cells. The tight stratification of the calbindin cone bipolar cell suggests that the inner plexiform layer is stratified according to depth, with narrow functional divisions within the broad partition of sublamina b, where ON signals are processed. The strength of coupling between the calbindin cone bipolar cells and AII amacrine cells suggests this pathway plays a major role under scotopic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters.

Ground squirrel retinas were immunostained with antibodies against calcium binding proteins (CBPs) and classical neurotransmitters in order to describe neuronal phenotypes in a diurnal mammalian retina and to then compare these neurons with those of more commonly studied nocturnal retinas like cats' and rabbits'. Double immunostained tissue was examined by confocal microscopy using antibodies a...

متن کامل

Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina.

PURPOSE Bipolar cells play major roles in transmitting visual signals from photoreceptors to ganglion cells and can be subdivided into at least 10 to 13 distinct types based on their morphology and physiology. This study aimed to morphologically identify the blue cone bipolar cells responsible for transmitting color signals in the rabbit retina. METHODS To find this cell type, bipolar cells w...

متن کامل

Morphological analysis of the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina.

Hyperpolarization-activated cation currents (I(h)) have been identified in neurons in the central nervous system, including the retina. There is growing evidence that these currents, mediated by the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN), may play important roles in visual processing in the retina. This study was conducted to identify and characterize HCN1-immu...

متن کامل

Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants.

PURPOSE To establish neuronal connections in the rod and cone pathway between laminated rabbit retinal transplants and the host retina. METHODS Fourteen adult rabbits received a complete full-thickness embryonic transplant. After survival times of 3 to 10 months, the retinas were studied under light microscope and with immunohistochemistry. Antibodies against protein kinase C (PKC), parvalbum...

متن کامل

The population of bipolar cells in the rabbit retina.

The population of bipolar cells in the rabbit retina was studied using Golgi impregnation and photocatalyzed filling of single cells with dihydrorhodamine, a quantitative sampling technique. The Golgi method revealed the morphology and stratification of cells in detail. The photofilling method allowed us to estimate the frequency of the cell types. From a sample of 243 Golgi-impregnated bipolar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 366 1  شماره 

صفحات  -

تاریخ انتشار 1996